
BugTrap Developer’s Guide

Page 1 of 44

BUGTRAP for WIN32 & .NET
DEVELOPER’S GUIDE

Save developer’s time and customer’s budget!

Copyright © 2005-2007 IntelleSoft
All rights reserved

BugTrap Developer’s Guide

Page 2 of 44

CONTENTS

1 PREFACE .. 3

2 OVERVIEW ... 3

3 BUGTRAP FOR WIN32 ... 6

3.1 ADDING BUGTRAP TO WIN32 APPLICATION.. 6
3.2 REDISTRIBUTING BUGTRAP FOR WIN32 ... 6
3.3 ERROR ANALYSIS FOR WIN32 APPLICATIONS .. 7

3.3.1 Symbolic information and PDB files ... 7
3.3.2 Minidump files ... 10
3.3.3 Running test application .. 11
3.3.4 Automatic MAP files analysis .. 18

3.4 NATIVE C++ EXCEPTIONS ... 24
3.4.1 Integration with MFC.. 25
3.4.2 Integration with ATL/WTL... 25

3.5 CUSTOM LOG FILES ... 26
3.6 CONFIGURING REPORTS DELIVERY .. 29
3.7 USING BUGTRAP FOR WIN32 IN SERVER APPLICATIONS.. 29

4 BUGTRAP FOR .NET .. 30

4.1 ADDING BUGTRAP TO .NET APPLICATION .. 30
4.2 REDISTRIBUTING BUGTRAP FOR .NET.. 30
4.3 ERROR ANALYSIS FOR .NET APPLICATIONS .. 30

4.3.1 Exception log ... 30
4.3.2 Minidump files ... 31

4.4 NOTES FOR GUI .NET APPLICATIONS ... 33

5 BUGTRAP SERVER... 35

5.1 BUGTRAP SERVER ... 36
5.1.1 Installing .NET version of BugTrap server.. 36
5.1.2 Installing Java version of BugTrap server .. 37

5.2 BUGTRAP WEB SERVER .. 37
5.2.1 Installing BugTrap Web server.. 37
5.2.2 Testing BugTrap Web server ... 38

5.3 CONFIGURING BUGTRAP SERVER.. 39
5.3.1 BugTrap server configuration file ... 40
5.3.2 BugTrap Web server configuration file ... 40
5.3.3 Configuration settings ... 41
5.3.4 System event log and BugTrap Web server.. 42
5.3.5 BugTrap server repository... 42

5.4 A CONCLUSION.. 43

APPENDIX A – FOLDERS LIST.. 44

BugTrap Developer’s Guide

Page 3 of 44

1 Preface
Some time ago I was working on a multi-tier application with quite complex logic. The
application was handling medical information and it was important to correctly synchronize
data in any circumstances. I put extra code to make the application as stable as possible,
added automatic backups and self-recovery. Do you think it solved all problems?
- No, I was still searching for a tool to handle problems seen by customers remotely. How
could I assist them and debug a problem if I live on another side of the globe? Eventually I
found excellent Jim Crafton’s article about a tool capable of intercepting unhandled errors.
That was a solution!
Unfortunately, original BlackBox was not customizable, it didn’t support minidump files,
Unicode strings and it didn’t have any server. In spite of these limitations it was an
excellent starting point because I knew exactly what kind of tool I need. I started working
on my own tool in hope to make flexible, customizable and powerful solution.

2 Overview
Usually it’s very frustrating to receive a message from your customer saying that your
program doesn’t work. Most users may not let you know what’s incorrect in your application
and which piece of code is wrong. Windows has built-in handler for unhandled errors,
however this default handler might be useless when error happens on customer side
because you rarely want to send your error report to Microsoft:

Default Win32 error handler

BugTrap solves this problem by overriding default error handler. BugTrap gathers error
details such as address, call stack and computer environment. It’s also possible to add
arbitrary number of custom log files with additional information to the default error report
using built-in or external logging functions.
BugTrap may save error reports on disk or automatically deliver error reports to
developer’s computer by e-mail, over HTTP or fast low-level TCP-based network protocol.
BugTrap server automatically manages error reports repository and notifies developers
about new errors.

BugTrap Developer’s Guide

Page 4 of 44

BugTrap stores error description in log and minidump files. Minidump files may be opened
in Microsoft Visual Studio .NET and in WinDbg. BugTrap package also includes
CrashExplorer utility that can extract symbolic information from MAP and PDB files.
There is a special BugTrap version for .NET applications. .NET version can handle
exceptions in pure .NET applications as well as it can handle mixed .NET assembles
(managed/unmanaged assembles) written in C++.

Simplified dialog

BugTrap Developer’s Guide

Page 5 of 44

Dialog with error details

BugTrap Developer’s Guide

Page 6 of 44

3 BugTrap for Win32

3.1 Adding BugTrap to Win32 application
BugTrap is redistributed as dynamic-link library (DLL). Two versions of BugTrap DLL are
available: ANSI version and Unicode version.

DLL name Character encoding *

BugTrap.dll ANSI multi-byte character strings

BugTrapU.dll Unicode strings

* In theory, ANSI version of BugTrap should correctly handle multi-byte character strings and Unicode version of BugTrap should
correctly handle surrogate character sequences, but it has not been tested in such environments.

It is recommended to use Unicode strings in new applications targeting Windows
NT/2000/XP platforms. Unicode applications not only better deal with national character
sets, but offer better speed. For instance, BugTrap encodes report and log files in UTF-8
format. While there is direct and quite simple mapping between Unicode and UTF-8
encoded characters, ANSI strings require additional conversions to/from Unicode. These
conversions affect performance of XML parser, log generator and network
communications.
The code bellow adds BugTrap support to Win32 application:

#include "BugTrap.h"

#pragma comment(lib, "BugTrap.lib") // Link to ANSI DLL
// #pragma comment(lib, "BugTrapU.lib") // Link to Unicode DLL

static void SetupExceptionHandler()
{
 BT_InstallSehFilter();

BT_SetAppName(_T("Your application name"));
 BT_SetSupportEMail(_T("your@email.com"));
 BT_SetFlags(BTF_DETAILEDMODE | BTF_EDITMAIL);
 BT_SetSupportServer(_T("localhost"), 9999);
 BT_SetSupportURL(_T("http://www.your-web-site.com"));
}

SetupExceptionHandler() function may be called from InitInstance() or main() function
depending on the type of your application.

Note: you may omit BT_SetAppName() and BT_SetAppVersion() calls if your application
includes version info block. BugTrap can retrieve application name and version number
from application resources.

3.2 Redistributing BugTrap for Win32
BugTrap is compatible with MS Windows 95/98/Me/NT/2000/XP. It requires shlwapi.dll
that’s installed with MS Internet Explorer 4.0 on Windows 95 or Windows NT 4.0. Windows
98/Me and Windows 2000/XP already have required system libraries.
BugTrap uses DbgHelp library which is redistributed as dbghelp.dll. This DLL is included
in MS Windows 2000 and later. To use this DLL on earlier systems, such as Windows NT

BugTrap Developer’s Guide

Page 7 of 44

4.0 or Windows 98, you should redistribute dbghelp.dll with your application. To obtain
the latest version of dbghelp.dll, download Debugging Tools for Windows.
It's recommended to put the most recent version of dbghelp.dll to the same folder with
BugTrap DLL otherwise some functions may be disabled. BugTrap always attempts to load
recent version of dbghelp.dll from its folder. If it cannot find dbghelp.dll in that folder, it
attempts to load dbghelp.dll from Windows system folder.

3.3 Error analysis for Win32 applications
Usually it’s desirable to get source file name, function name and line number information
from error address because such information can greatly simplify further error analysis and
correction. There are several approaches to get this information:

a) symbolic information in PDB files when available;
b) minidump files;
c) a utility that performs post-mortem MAP and PDB files analysis.

Let’s discuss every approach.

3.3.1 Symbolic information and PDB files
A program database (PDB) file holds debugging and project state information that allows
incremental linking of a Debug configuration of your program. A PDB file is created when
you compile a C/C++ program with /ZI or /Zi or a Visual Basic/C# .NET program with
/debug.
BugTrap automatically uses PDB file if available when it encounters a problem. PDB file
must be located in the same directory with EXE file to be found. BugTrap automatically
displays source file names, function names and line numbers for call stack entries in the
main window when it finds an appropriate PDB file. If application’s PDB file cannot be
found on customer’s computer, BugTrap displays hexadecimal addresses with no symbolic
information. These addresses can be analyzed later on developer’s computer.
Debug information in PDB file doesn’t affect the size and speed of your program, Visual
Studio only saves a path to PDB file in EXE file. You may enable PDB file generation for
Release configuration in your project and redistribute PDB file to your customers along with
program EXE file.
However PDB files have a couple of disadvantages:

a) they are quite large, for example, PDB file for 300KB application may require 3MB
disk space;

b) though PDB files don’t include application source code, many developers won’t
redistribute PDB files with their applications because PDB files may simplify reverse
engineering.

Usually it’s better to redistribute PDB files to application testers and quality assurance, but
don’t include PDB files in public releases.

Hopefully it is not necessarily to redistribute PDB files with your application in order to take
advantage of this technology. CrashExplorer can extract symbolic information from PDB
files and merge it with raw error log on developer’s computer. PDB files can be stored
locally for all public releases and used later for generating human readable error reports.

BugTrap Developer’s Guide

Page 8 of 44

The following steps enable PDB files for Release configuration:
1. select Release configuration in “Project Settings” dialog;
2. select “Program Database” format of debug information on “C/C++\General” tab;
3. enable “Generate Debug Info” option.

Use these pictures for the reference:

Visual Studio 7

BugTrap Developer’s Guide

Page 9 of 44

Visual Studio 6

BugTrap Developer’s Guide

Page 10 of 44

Note: you may not see MFC function names and line numbers in BugTrap stack trace
window if your application is dynamically linked to MFC even if application’s PDB file is
accessible for BugTrap. Instead you may notice multiple entries in the form of
OrdinalXXX(). This is because application’s PDB file doesn’t include symbolic information
for MFC classes. You can solve this problem by copying MFC’s PDB file from System32
folder to the application’s folder or by linking your project to MFC statically. But even if
MFC’s symbolic information is not available it still can be restored from minidump file or by
running CrashExplorer.

3.3.2 Minidump files
BugTrap can produce user-mode minidump files with a useful subset of the information
contained in a crash dump file. BugTrap creates minidump files very quickly and efficiently
because minidump files are small, they can be sent over the Internet to technical support of
the application. A minidump file does not contain as much information as a full crash dump
file, but it contains enough information to perform basic debugging operations. To read a
minidump file, you must have the binaries and symbol files available for the debugger.
Minidump files don’t require PDB files on customer’s computer, though you should keep
PDB files on developer’s computer for further error analysis in the debugger. Minidump
files may be analyzed in WinDbg which is redistributed as part of Debugging Tools for
Windows or in Visual Studio .NET. Minidump files provide the best option for reproducing
customer-side errors on developer’s computer. Minidump files have few disadvantages:

a) minidump files are relatively large comparing to default text output produced by
BugTrap. BugTrap archives minidump files to reduce the size of generated report.

b) minidump files are stored in binary format, so you can’t read them without special
tool like WinDbg or Microsoft Visual Studio .NET.

BugTrap Developer’s Guide

Page 11 of 44

c) minidump files can’t be created on Windows 9x. Hopefully it is not a big issue for
BugTrap because you can use CrashExplorer utility which can extract error location
from hexadecimal error address.

BugTrap always generates log file in plain text or XML format. Minidump files are only
generated in detailed report mode. You must specify BTF_DETAILEDMODE option in order to
enable this mode:

BT_SetFlags(/* other options */ | BTF_DETAILEDMODE);

BugTrap stores log file and minidump file in one zip archive to reduce the size of error
report. You can add custom log files to the same zip archive. Custom log files can be
generated using built-in BugTrap functions:

INT_PTR iLogHandle = BT_OpenLogFile(NULL, BTLF_TEXT);
BT_AddLogFile(BT_GetLogFileName(iLogHandle));

BT_InsLogEntry(iLogHandle, BTL_INFO, _T("custom log message"));
 - or -
BT_InsLogEntryF(iLogHandle, BTL_WARNING, _T("numeric output: %d"), 123);

See “Custom log files” topic for more information.

3.3.3 Running test application
BugTrap comes with several test applications. You can launch BugTrapTest example and
hit “Access Violation!” button on the toolbar:

This button executes the following code:

void CBugTrapTestApp::OnTestAccessViolation()
{
 int* ptr = 0;
 *ptr = 0; // ACCESS VIOLATION!!!
}

After hitting the “Access Violation!” button you should see main BugTrap window. This
window displays exception information, CPU registers, call stack and several buttons:

Button Description

Close Closes BugTrap window and quits the application.

Submit Bug Sends error report to product support by e-mail or over the network. You should

BugTrap Developer’s Guide

Page 12 of 44

Button Description
specify server address/e-mail address during application startup.

Mail To… Depending on BTF_EDITMAIL flags, opens “Send Mail” dialog or launches system
e-mail client where user can prepare custom e-mail message addressed to the
support.

Preview… Opens Preview dialog that displays the contents of error report files.

Save… Saves error report to the file. File may include minidump and custom log files
depending on BTF_DETAILEDMODE flag.

Information… Displays generic information about installed operating system.

State… Displays generic information about running processes and loaded modules.

It is not necessary to specify server address, support e-mail or URL of support site.
Unspecified links will not be shown on the screen.
User may press Preview or Save buttons to examine report contents. By default report
name includes date and time for the uniqueness.

Error report includes these sections:

1. application name and version;
2. computer and user names (used for identifying problems in local network);
3. date and time of the error;
4. error description;
5. user-defined message (if available);
6. COM error information (if available);
7. values of CPU registers;
8. generic CPU information;
9. operating system information;
10. memory usage statistics;
11. stack trace information for all running threads;
12. process command line and current directory;
13. process environment variables;
14. optional list of running processes and loaded modules;
15. optional screenshot taken during program crash.

Error information can be presented in plain text or in XML format:

Excerpt from log file in plain text format

BugTrapTest.exe caused ACCESS_VIOLATION in module "<Executable
Path>\BugTrapTest.exe" at 001B:00401333,
CBugTrapTestApp::OnTestAccessViolation()+19 byte(s) in "<Source
Path>\BugTrapTest.cpp", line 161+3 byte(s)

Excerpt from log file in XML format

<error>
 <what>ACCESS_VIOLATION</what>
 <process>

BugTrap Developer’s Guide

Page 13 of 44

 <name>BugTrapTestE.exe</name>
 <id>6936</id>
 </process>
 <module><Executable Path>\BugTrapTestE.exe</module>
 <address>001B:00401333</address>
 <function>
 <name>CBugTrapTestApp::OnTestAccessViolation</name>
 <offset>19</offset>
 </function>
 <file><Source Path>\BugTrapTest.cpp</file>
 <line>
 <number>161</number>
 <offset>3</offset>
 </line>
</error>

You can open “BugTrapTest.cpp” and check line 161: *ptr = 0;

3.3.3.1 Minidump files in Visual Studio .NET
Minidump files can be opened in Visual Studio IDE. Open such file in Visual Studio and
start the debugger – the IDE will ask you to create a new solution and the debugger will
create a fake process. Now you can examine the problem using well-known environment:

BugTrap Developer’s Guide

Page 14 of 44

Note: often it’s difficult to find a problem in Release version because optimizing compiler
may remove some variables and even reposition pieces of code. Optimization affects
information stored in minidump files and BugTrap reports. In this particular case it is not
possible to see ptr value in Visual Studio debugger with enabled optimization.
Usually it’s better to disable compiler optimization during project development and testing:

BugTrap Developer’s Guide

Page 15 of 44

In most cases environment on client’s computer differs from the environment on
developer’s computer: application binaries may be located in different folders, versions of
system DLLs may not match. In this case “Call Stack” window won’t display much useful
information and Modules window will display warnings “No matching binary found”:

In this case you should create a folder, copy valid binaries with appropriate versions to that
folder and specify path to that folder in MODPATH command argument:

BugTrap Developer’s Guide

Page 16 of 44

The debugger should work as expected after the restart, and you should be able to
discover the problem. Though you may notice that Modules window still displays warnings
“Cannot find or open a required DBG file” or “No symbols loaded” for system DLLs:

Such warnings can be fixed after copying remaining symbol files (PDB and DBG files) to
binaries folder or after specifying up a path to Microsoft Symbol Server:

BugTrap Developer’s Guide

Page 17 of 44

3.3.3.2 Minidump files in WinDbg
WinDbg is a powerful debugger with a graphical interface that can debug both user-mode
and kernel-mode code. WinDbg can view source code, set breakpoints, view variables
(including C++ objects), stack traces, and memory. WinDbg includes a Command window
to issue a wide variety of commands, and supports kernel-mode remote debugging using
two computers (host and target machine). It also allows remote debugging of user-mode
code, and 64-bit debugging. WinDbg can be downloaded for free from Microsoft Windows
Debugging Tools web site.
Open crash dump file in WinDbg by selecting “File\Open Crash Dump” menu command.
Switch to command view by selecting “View\Command” menu command. Enter the
following commands:

a) enter .sympath command followed by semi-colon delimited list of directories with
PDB and DBG files;

b) enter .srcpath command followed by semi-colon delimited list of directories with
source files;

c) enter .exepath command followed by semi-colon delimited list of directories with
executable files;

d) enter .ecxr to display the context record associated with current exception.

For example:

.sympath c:\test\sym

.srcpath c:\test\src

.exepath c:\test\bin

.ecxr

BugTrap Developer’s Guide

Page 18 of 44

e) You may wish to append a path to Microsoft Symbol Server to .sympath command
in order to download symbols for system DLLs:

.sympath c:\test\sym;SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

If everything is configured well, WinDdg may display this information:

3.3.4 Automatic MAP files analysis
A MAP file is a text file that contains the following information about the program being
linked:

• the module name, which is the base name of the file;
• the timestamp from the program file header (not from the file system);
• a list of groups in the program, with each group's start address (as section:offset),

length, group name, and class;
• a list of public symbols, with each address (as section:offset), symbol name, flat

address, and OBJ file where the symbol is defined;
• the entry point (as section:offset).

BugTrap Developer’s Guide

Page 19 of 44

Note: Microsoft has discontinued proper support of MAP files starting from Microsoft Visual
Studio 2005. New linker can’t generate line numbers in a MAP file and /MAPINFO:LINES
option is no longer supported. CrashExplorer won’t extract source file names and line
numbers from such MAP files which makes MAP files useless on the new platform.

However this doesn’t mean that there is no reason to use CrashExplorer with Microsoft
Visual Studio 2005 because CrashExplorer can extract symbolic information from PDB
files. Most developers won’t release products to their customers with accompanying PDB
files because PDB files can simplify reverse engineering. Therefore it is better to keep PDB
files for every public release on developer’s machine and use CrashExplorer to convert raw
addresses from a log file to human readable report with symbolic information.

MAP file may be generated during project linking. You should not distribute this file to your
customers. It should be saved on developer’s computer for every public release. MAP file
is your latest opportunity to find symbolic information about the error if you don’t have PDB
file or crash dump was not successfully generated (DbgHelp has certain problems on
Windows 9x).
In order to generate MAP file for your project, follow these steps:

1. select Release configuration in “Project Settings” dialog.
2. you should already have selected “Program Database” format of debug information

on “C/C++\General” tab if you make PDB files for Release configuration. This option
can be used with MAP files. If you don’t want to make PDB files you should at least
select “Line Numbers Only” format (it enables /Zd compiler option).

3. enable “Generate Map File” option on “Linker\Debugging” tab.
4. enable “Max Exports” and “Map Lines” options in Visual Studio 2003 or add custom

linker switches “/MAPINFO:EXPORTS” and “/MAPINFO:LINES” in Visual Studio 6.
5. optionally configure “Map File Name” option in Visual Studio 2003 or adjust custom

linker switch “/MAP:<Map File Name>” in Visual Studio 6.

Use these pictures for the reference:

BugTrap Developer’s Guide

Page 20 of 44

Visual Studio 7

Visual Studio 6

BugTrap Developer’s Guide

Page 21 of 44

Log file can be generated either in plain text (BTRF_TEXT) or in XML (BTRF_XML) format. Plain
text is more suitable for human but it is almost useless if you want to parse and
automatically handle log information. By default BugTrap generates log files in XML format.
Output format can be changed by calling BT_SetReportFormat().
XML format has one great advantage: it can be parsed by CrashExplorer. CrashExplorer
merges raw addresses retrieved from XML file with symbolic information found in MAP or
PDB files and restores complete stack trace even when PDB file with symbolic information
was not available on customer’s computer:

BugTrap running without PDB file

CrashExplorer restores stack trace

Before using CrashExplorer you should prepare a folder with MAP or PDB files for all
modules (EXE or DLL files) in your project. If you have not used any libraries except of
MFC or standard Windows DLLs, simply copy one MAP or PDB file for the main
executable. If your project includes main executable and two additional DLLs, you should
copy three MAP/PDB files to this folder. If you don’t have MAP and PDB files for certain
modules and XML log file doesn’t include symbolic information for these modules,
CrashExplorer won’t be able to display stack trace with function names and line numbers
for such modules. Every MAP/PDB file should have the same base name as corresponding
module:

MAP file mapping PDB file mapping

MyApp .exe => MyApp .map
- or -

MyLib .dll => MyLib .map

MyApp .exe => MyApp .pdb
- or -

MyLib .dll => MyLib .pdb

Once you have prepared a folder with MAP and PDB files, specify a path to the XML log
file and press Calculate button. Program output can be copied to the clipboard or saved to
a text file:

BugTrap Developer’s Guide

Page 22 of 44

CrashExplorer running in express mode

We have been working on one module for the main executable in this project, so we have only one MAP file

You may also restore symbolic information manually (on Manual Mode tab). This might be
useful if you have chosen plain text format of log files. BugTrap always stores hexadecimal

BugTrap Developer’s Guide

Page 23 of 44

crash address in text log file, even if you don’t distribute PDB file to customers. The
following example shows error message without symbolic information (without source file
name and line number):

BugTrapTest.exe caused ACCESS_VIOLATION in module "<Executable
Path>\BugTrapTest.exe" at 001B:00401333

001B:00401333 is a crash address, but you only need to know the address offset (address
part after the colon). It’s 00401333.
Text log also includes physical load addresses for every module (DLL or EXE file) loaded
in process address space. Physical load address is vital for mapping crash address to
source file name and line number in your project. Most developers rarely rebase project
modules (adjust load addresses of every loaded module to avoid module overlapping in the
memory). Operating system changes load addresses for overlapped modules. Therefore
physical load addresses may not match to preferred load addresses specified during
module linking. You may find module load addresses in module information block, for
example:

Process: BugTrapTest.exe, PID: 2312, Modules:
--
<Executable Path>\BugTrapTest.exe (1.0.0.1), Base: 00400000, Size: 002C8000
C:\WINDOWS\system32\ntdll.dll (5.1.2600.2180), Base: 7C900000, Size: 000B0000
C:\WINDOWS\system32\kernel32.dll (5.1.2600.2180), Base: 7C800000, Size: 000F4000
C:\WINDOWS\system32\USER32.dll (5.1.2600.2622), Base: 77D40000, Size: 00090000
C:\WINDOWS\system32\GDI32.dll (5.1.2600.2818), Base: 77F10000, Size: 00047000

There are a lot of modules loaded in address space of the process. We need to know
physical load address of one module. We are looking for a module that caused an
exception. According to the log file this module is BugTrapTest.exe:

BugTrapTest.exe caused ACCESS_VIOLATION in module "<Executable
Path>\BugTrapTest.exe" at 001B:00401333

So, now you have physical load address of BugTrapTest.exe module - according to the log
file, it’s 00400000. By the way most EXE files are loaded at this address, though it may vary
for different DLLs. Let’s sum up all available information:

Crash Address 00401333

Module Name BugTrapTest.exe

Physical Load Address 00400000

It’s quite enough to find source file name, function name and line number if you have MAP
file for BugTrapTest.exe module. Note, CrashExplorer automatically extracts preferred load
address (00400000 in our example) from BugTrapTest.map file. Preferred load address is
the same as physical load address for this module, so you can leave it as-is. CrashExplorer
doesn’t know crash address, so you should put 00401333 to corresponding field.
Press Calculate button and check the result:

BugTrap Developer’s Guide

Page 24 of 44

CrashExplorer running in manual mode

It’s also possible to walk through call stack entries by specifying different call addresses in
“Crash Address” field.

3.3.4.1 Summary
There are three different approaches to track information: PDB files, minidumps and MAP
files. Which approach is better? There is no absolute answer, but I would recommend the
following:

a) redistribute PDB files during beta testing to internal testers and SQA groups;
b) don’t redistribute PDB files to end users;
c) instead, store PDB files for all public releases in local repository;
d) always use minidump files;
e) use CrashExplorer along with PDB or MAP files for quick error analysis;
f) use minidumps along with PDB files for deep error analysis in the debugger.

3.4 Native C++ exceptions
It is also possible to intercept unhandled C++ exceptions using BugTrap. The following line
of code installs BugTrap terminate-handler called by the runtime on unhandled C++
exception:

BT_SetTerminate();

BT_SetTerminate() is just a macro that calls set_terminate() defined in C runtime. Since
set_terminate() is not defined in BugTrap headers, you should include <eh.h> in program
source. Note that set_terminate() installs termination routine only in the active thread. In
multithreaded environment you should call BT_SetTerminate() in every thread. After proper

BugTrap Developer’s Guide

Page 25 of 44

installation of termination routine, BugTrap automatically unwinds stack trace to the
location of throw statement that caused unhandled C++ exception and you may normally
see your function on top of the stack.

3.4.1 Integration with MFC
By default, MFC intercepts all un-caught exceptions derived from CException class, but you
may use BugTrap instead of MFC error handler. This, however, requires few additional
changes in your code, because BugTrap can’t intercept errors caught by MFC before
BugTrap handler. In order to let BugTrap be notified about exception first, you should
derive frame, view, dialog and window classes from BTWindow class. BTWindow class is a
template and it takes a name of base window class as a parameter. For example, if you
want to handle all uncaught exceptions in main frame class, you should derive your frame
class from BTWindow<CFrameWnd> rather than CFrameWnd:

class CMainFrame : public BTWindow<CFrameWnd>

Similarly, if you want to handle all exceptions in your view class, you should use this code:

class CMyView : public BTWindow<CView>
 - or -
class CMyView : public BTWindow<CScrollView>

Other than that, no additional changes are required, it is not necessary to change base
class name in RTTI macros (IMPLEMENT_XXX) or in message map macros
(BEGIN_MESSAGE_MAP). As a bonus, BugTrap also recognizes exceptions derived from STL
exception class. For both types of exceptions, BugTrap can extract error description and
put it to the report.

If you have noticed, that after these changes Visual Studio doesn’t treat your frame or view
class appropriately and doesn’t display command handlers for your class in a wizard, you
can add these lines to the header of your class:

// this is required to bypass VS.NET parser issues
#ifdef __NEVER_DEFINED__
 #define BTWindow<CView> CView
#endif

class CMyView : public BTWindow<CView>

3.4.2 Integration with ATL/WTL

ATL/WTL projects may also take advantage of BugTrap window classes. Even though ATL
doesn’t provide default exception handler, it is still better to let BugTrap handle all uncaught
errors before exception is passed to Windows. There is special version of BTWindow class
defined for ATL. From user perspective, this class takes the same template arguments and
provides the same syntax:

class CMainFrame : public BTWindow< CFrameWindowImpl<CMainFrame> >

BugTrap Developer’s Guide

Page 26 of 44

Unlike MFC which internally handles dialogs as normal windows, ATL uses specific classes
for dialogs. That’s why all ATL dialog-derived classes should use BTDialog rather than
BTWindow:

class CMyDialog : public BTDialog< CDialogImpl<CMyDialog> >

More complex projects may use ATL and MFC simultaneously. For such projects you
should prefix BTWindow class name with ATL or MFC namespace:

class CMyAtlView : public ATL::BTWindow< CWindowImpl<CMyAtlView> >
 - and -
class CMyMfcView : public MFC::BTWindow<CView>

3.5 Custom log files
Often normal code causes an exception as a side effect of another logical mistake. In this
case standard error report may not help. Unfortunately there is no general approach which
could solve all logical errors. There are only some techniques which can simplify error
detection. Custom logging is probably the most efficient error-preventive mechanism.
Developers track important program activity in log files. These files can be viewed and
discovered after the crash.
BugTrap has built-in functions that can attach an arbitrary number of additional files to the
report in detailed mode (with flag BTF_DETAILEDMODE was specified).
You can attach custom log files to the report as shown below:

BT_AddLogFile(_T("LogFile1.txt"));
BT_AddLogFile(_T("LogFile2.txt"));

If you want to export some keys from Windows registry and attach them to the report, you
can take advantage of built-in BugTrap function:

BT_AddRegFile(_T("Settings.reg"),
 _T("HKEY_CURRENT_USER\\Software\\My Company\\My Application\\Settings"));

Custom log files can be added when application is being started or you can set custom
error handler and perform additional initialization in this handler. Custom error handler is
called by BugTrap in response to the unhandled exception:

void CALLBACK MyErrHandler(INT_PTR nErrHandlerParam)
{
 ... // last-minute customization
}
...
BT_SetPreErrHandler(MyErrHandler, 0);

C/C++ developers don’t have standard logging functions. Many developers write their own
code. Typically, developers open a file, append a string and close the file. There is nothing
bad in this approach; however BugTrap includes built-in functions that can further simplify
this task. These functions have several advantages over the regular method:

BugTrap Developer’s Guide

Page 27 of 44

• BugTrap keeps all messages in a list during normal application processing so that new
messages can be quickly added and old messages can be quickly removed from the
log. BugTrap automatically flushes all messages to the disk before quitting the
application. Such approach provides the best tradeoff between the speed of log
updates and crash resistance, but you should not use these functions on very large log
files (usually more than 10,000 records).

• Log files can be stored in XML or in plain text format. XML data can be exported to any
other format, for example you can export XML records to nice HTML table with few lines
of XSL code. However, plain text can be loaded into memory 5-10 times faster than
XML dataset. BugTrap uses custom XML parser, optimized for streaming large XML
datasets and you will not notice much difference in speed on files with few thousand
entries. Larger files might require more time to be parsed. So, you should consider the
size of the file before making decision about log format.

• All logging functions are thread safe and you can safely add log entries to the same log
file from different threads without explicit synchronization.

• Logging functions correctly deal with national characters. Log information is encoded in
UTF-8 format and you can correctly interpret any locale-dependent information such as
file paths.

• Log messages can be echoed to the STDOUT, STDERR and to debugger console.
• Log messages can be automatically filtered according to their severity.

1. Opening & closing

You can open an arbitrary number of log files. Use BT_OpenLogFile() to get the handle of
newly opened log file. This handle must be passed to one of the functions:
BT_AppLogEntry() or BT_InsLogEntry(). You can use an arbitrary log file name in
BT_OpenLogFile() or you can pass NULL pointer to assign default name to the log. Default
log file name is "%APPDATA%\<Application Name>\<Main Module Name>.log". Log file
should be closed using function BT_CloseLogFile(). This function releases internally
allocated resources.

2. Controlling log size

You can limit maximum number of bytes (BT_SetLogSizeInBytes()) or records in a log file
(BT_SetLogSizeInEntries()). Older records are automatically pulled out from the file. By
default log files are unlimited (log size = MAXDWORD).

3. Adding new records

BT_InsLogEntry() inserts new records at the beginning of the file. BT_AppLogEntry()
appends new records to the end of the file. There are special versions of these functions
with printf-like syntax. It’s also possible to enable time statistics for all log entries by
specifying BTLF_SHOWTIMESTAMP flag in BT_SetLogFlags() function. Timestamps are stored
in locale-independent format YYYY/MM/DD HH:MM:SS.

4. Filtering output

Log output can be filtered using various log levels. Log level is assigned to every log entry.
The following log levels are available:

• BTL_ERROR – error messages (the highest priority);
• BTL_WARNING – warning messages;
• BTL_INFO – information messages (the lowest priority).

BugTrap Developer’s Guide

Page 28 of 44

You can pass minimum desirable log level to BT_SetLogLevel() and subsequent
BT_InsLogEntry() or BT_AppLogEntry() operations will add all messages with specified or
higher priority to the log. For example you can set log level to BTL_WARNING and only
warning and error messages will be added to the log. You may even disable the output for
all log messages by passing BTL_NONE to BT_SetLogLevel().
Every BT_InsLogEntry() or BT_AppLogEntry() operation takes message level as an
argument. Different parts of your program may add information messages, warning
messages and error messages. You don’t have to add any extra code to specify which of
these messages must be added to the log. Single BT_SetLogLevel() call controls all
output. Usually this setting is stored somewhere in program configuration and user may
dynamically control the amount of produced log output. By default all messages are added
to the log file.

5. Echo mode

It is possible to duplicate log messages on the screen in console applications or dump
messages to the debugger console. By default log messages are only stored in a file, but
echo mode can be enabled using BT_SetLogEchoMode() function. Please note that enabled
echo mode decreases the speed of log updates because the output of log files sharing the
same echo mode is mutually synchronized. Normal log updates that don’t use any echoing
are performed much faster – literally instantaneously.

6. Code example
The following snippet of code calls different logging functions:

// open new log file, use the default log file name
INT_PTR iLogHandle = BT_OpenLogFile(NULL, BTLF_TEXT);
// set log size = 100 records
BT_SetLogSizeInEntries(iLogHandle, 100);
// automatically add time statistics to log output
BT_SetLogFlags(iLogHandle, BTLF_SHOWLOGLEVEL | BTLF_SHOWTIMESTAMP);
// apply filter to log output
BT_SetLogLevel(iLogHandle, BTL_WARNING);

// get default log file name
PCTSTR pszLogFileName = BT_GetLogFileName(iLogHandle);
// add custom log file to the report
BT_AddLogFile(pszLogFileName);

// insert log entries at the begging of the file
BT_InsLogEntry(iLogHandle, BTL_INFO, _T("custom log message"));
BT_InsLogEntryF(iLogHandle, BTL_WARNING, _T("numeric output: %d"), 123);
// - or -
// append log entries to the end of file
BT_AppLogEntry(iLogHandle, BTL_ERROR, _T("another message"));
BT_AppLogEntryF(iLogHandle, BTL_INFO, _T("printf-like syntax: %s"), pszMessage);

// Close log file
BT_CloseLogFile(iLogHandle);

C++ developers may prefer simplified interface of built-in BTTrace class that wraps these
functions:

BTTrace trace(NULL, BTLF_TEXT);

BugTrap Developer’s Guide

Page 29 of 44

trace.InsertF(_T("printf-like syntax: %s"), pszMessage);
// - or -
trace.Append(BTL_WARNING, _T("something is wrong"));

3.6 Configuring reports delivery
Report may be delivered to product support by e-mail, over HTTP or TCP-based network
protocol. Every approach has its own advantages, see BugTrap server topic for details.
Destination e-mail address for error reports may be specified using such code:

BT_SetSupportEMail(_T("your@email.com"));

You may configure BugTrap to send error reports to BugTrap server by low-level TCP-
based network protocol, just specify desirable server host and port number:

BT_SetSupportServer(_T("localhost"), 9999);

If you want to send error reports over HTTP rather than native BugTrap protocol, simply
specify server URL as host name, and BUGTRAP_HTTP_PORT or 80 as a port number:

BT_SetSupportServer(_T("http://localhost/BugTrapWebServer/RequestHandler.aspx"),
BUGTRAP_HTTP_PORT);

You may specify e-mail address where you want to receive notification messages about
incoming error reports from BugTrap server:

BT_SetNotificationEMail(_T("another@email.com"));

Note: notification e-mails may be disabled in BugTrap server configuration file.

3.7 Using BugTrap for Win32 in server applications
Server applications and various services must not show GUI. Default action can be pre-
configured for such applications and BugTrap won’t display any dialogs for such
applications. For example:

// Force BugTrap to submit reports to support server w/o GUI
BT_SetActivityType(BTA_SENDREPORT);

It’s also possible to restart your server after the problem from the custom error handler.
You can set custom error handler using BT_SetPostErrHandler().

BugTrap Developer’s Guide

Page 30 of 44

4 BugTrap for .NET

4.1 Adding BugTrap to .NET application
.NET version of BugTrap is redistributed as managed library: BugTrapN.dll. This DLL
consists of managed and unmanaged code. Such design lets BugTrap support pure
managed .NET assemblies as well as mixed C++ assemblies that could throw managed
.NET exceptions and native Win32 exceptions.
BugTrap for .NET exposes both managed and unmanaged (native) interfaces. Managed
interface is accessible from C# or VB.NET code:

ExceptionHandler.AppName = "Your application name";
ExceptionHandler.Flags = FlagsType.DetailedMode | FlagsType.EditMail;
ExceptionHandler.DumpType = MinidumpType.NoDump;
ExceptionHandler.SupportEMail = "your@email.com";
ExceptionHandler.SupportURL = "http://www.your-web-site.com";
ExceptionHandler.SupportHost = "localhost";
ExceptionHandler.SupportPort = 9999;

Unmanaged interface is accessible from native Win32 code and was discussed earlier. It is
possible to use any interface or even both interfaces in the same application.

4.2 Redistributing BugTrap for .NET
For performance reasons, .NET version of BugTrap uses wide character strings. This code
is compatible with Windows NT/2000/XP. Windows 95/98/Me support is abandoned .NET
version also depends on DbgHelp - you may find more information above. More
importantly, it requires Microsoft .NET Framework 2.0 and Visual C++ runtime. In
particular, the following DLLs are required:

• msvcm80.dll
• msvcp80.dll
• msvcr80.dll

You may ship these DLLs with your application or you may wish to install Microsoft Visual
C++ 2005 Redistributable Package.

4.3 Error analysis for .NET applications
As well as Win32 version, BugTrap for .NET also generates error information in few
formats:

a) log files enriched with PDB files when possible;
b) minidump files.

4.3.1 Exception log
BugTrap for .NET generates detailed error log in XML or text format. Log file includes
managed stack trace for the thread that causes an exception. Due to certain limitations of
.NET framework, current version of BugTrap cannot produce managed stack trace for any

BugTrap Developer’s Guide

Page 31 of 44

other threads (i.e. only one thread is logged). We are working on this issue, trying to extend
BugTrap functionality.
Stack trace for the current thread, though, includes all necessary details:

<stack>
 <frame>
 <assembly>BugTrapNetTest</assembly>
 <native-offset>200</native-offset>
 <il-offset>49</il-offset>
 <type>BugTrapNetTest.MainForm</type>
 <method>System.Void exceptionButton_Click(System.Object sender,
System.EventArgs e)</method>
 <method>System.Void exceptionButton_Click(System.Object sender,
System.EventArgs e)</method>
 <file><Source Path>\MainForm.cs</file>
 <line>2d</line>
 <column>4</column>
 </frame>
 ...
<stack>

If you redistribute your application along with PDB file as it was discussed earlier, log file
includes line number and source file names. If PDB file is not accessible, log file includes
only assembly, type and method names.

4.3.2 Minidump files

As discussed, it is possible to generate redistribute applications without accompanying
PDB files, produce a minidump file and analyze it in WinDbg or in Visual Studio. It is
handled with the help of SOS Debugging Extension (sos.dll). This extension is redistributed
as a part of Microsoft .NET Framework. SOS adds several commands to Visual Studio
Debugger and WinDbg. By this time, the most recent version of SOS has one limitation: it
reveals readable call stack with method names and types, but it doesn’t show line numbers
and source file names. Supposedly, this issue should be resolved in the next revision of
Windows Debugging Tools. Moreover, there is yet another issue - SOS doesn’t seem to
work with small minidump files (MiniDumpNormal). Full minidump files
(MiniDumpWithFullMemory) definitely work, but they are significantly larger. Unpacked crash
dump may consume 100 – 150MB. Archived dump file is smaller – 40MB which is better,
but still not usable in most cases. It also takes more time to prepare large dump and to
make an archive. Frankly speaking, current version of SOS doesn’t look like finished
product. It might be useful during product testing, but it is not recommended in production
environment. This line of code disables minidump output:

ExceptionHandler.DumpType = MinidumpType.NoDump;

To use minidump files in managed application, set dump type to full:

ExceptionHandler.DumpType = MinidumpType.WithFullMemory;

The following example demonstrates sample session in WinDbg:

BugTrap Developer’s Guide

Page 32 of 44

1. load SOS extension from Microsoft .NET Runtime folder:

.load C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\SOS.dll

2. check if the extension was loaded:

.check

Output:

Extension DLL chain:
 C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\sos.dll: image 2.0.50727.42,
API 1.0.0, built Fri Sep 23 00:27:26 2005
 [path: C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\sos.dll]

3. set symbol/source search paths:

.sympath c:\test\sym

.srcpath c:\test\src

.exepath c:\test\bin

4. list managed threads:

!threads

Output:

ThreadCount: 3
UnstartedThread: 0
BackgroundThread: 2
PendingThread: 0
DeadThread: 0
Hosted Runtime: no
 PreEmptive GC Alloc Lock
 ID OSID ThreadOBJ State GC Context Domain Count APT
Exception
 0 1 970 00164368 6020 Enabled 00000000:00000000 001584f8 1 STA
System.Exception (01293190)
 2 2 4b4 00170550 b220 Enabled 00000000:00000000 001584f8 0 MTA
(Finalizer)
 7 3 f40 0015bf48 220 Enabled 00000000:00000000 001584f8 0 Ukn

Note: there is an exception object in the Exception column for the first thread:
System.Exception (01293190)

5. display exception information of this object:

!pe 01293190

Output:

Exception object: 01293190
Exception type: System.Exception

BugTrap Developer’s Guide

Page 33 of 44

Message: <none>
InnerException: <none>
StackTrace (generated):
 SP IP Function
 0012F02C 00C8A759
BugTrapNetTest.MainForm.exceptionButton_Click(System.Object, System.EventArgs)
 0012F044 7B060A6B System.Windows.Forms.Control.OnClick(System.EventArgs)
 0012F054 7B105379 System.Windows.Forms.Button.OnClick(System.EventArgs)
 0012F060 7B10547F
System.Windows.Forms.Button.OnMouseUp(System.Windows.Forms.MouseEventArgs)
 0012F084 7B0D02D2
System.Windows.Forms.Control.WmMouseUp(System.Windows.Forms.Message ByRef,
System.Windows.Forms.MouseButtons, Int32)
 0012F0D0 7B072C74
System.Windows.Forms.Control.WndProc(System.Windows.Forms.Message ByRef)
 0012F134 7B0815A6
System.Windows.Forms.ButtonBase.WndProc(System.Windows.Forms.Message ByRef)
 0012F170 7B0814C3
System.Windows.Forms.Button.WndProc(System.Windows.Forms.Message ByRef)
 0012F178 7B07A72D
System.Windows.Forms.Control+ControlNativeWindow.OnMessage(System.Windows.Forms.
Message ByRef)
 0012F17C 7B07A706
System.Windows.Forms.Control+ControlNativeWindow.WndProc(System.Windows.Forms.Me
ssage ByRef)
 0012F190 7B07A515 System.Windows.Forms.NativeWindow.Callback(IntPtr, Int32,
IntPtr, IntPtr)

StackTraceString: <none>
HResult: 80131500

Now we have long awaited stack trace.

4.4 Notes for GUI .NET applications
Microsoft .NET Framework 2.0 lets you enable Windows XP themes support by calling
Application.EnableVisualStyles(). By default, this code is added to every new project by
AppWizard. BugTrap may initialize Windows Common Controls before XP themes are
enabled in your code. Windows Common Controls 5.x handles may be impurely interpreted
by ComCtl32 version 6.x. You may notice this problem when you do not see any icons in
BugTrap GUI. The issue may be fixed by adding a manifest file to your application:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
 <assemblyIdentity
 version="1.0.0.0"
 processorArchitecture="X86"
 name="Microsoft.Windows.Common-Controls"
 type="win32"
/>
 <description>Windows forms common controls manifest</description>
 <dependency>
 <dependentAssembly>
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"

BugTrap Developer’s Guide

Page 34 of 44

 processorArchitecture="X86"
 publicKeyToken="6595b64144ccf1df"
 language="*"
 />
 </dependentAssembly>
 </dependency>
</assembly>

If your executable is called MyApp.exe, then this file must be named MyApp.exe.manifest. It
must be copied to the same folder as your executable. To automate this task, save this file
as app.exe.manifest, put it to your project and add a command to post build events:

This command will automatically rename and copy manifest file to the folder with the
executable.

BugTrap Developer’s Guide

Page 35 of 44

5 BugTrap server
Error reports may be delivered to product support in e-mail attachments, over HTTP or low-
level TCP-based network protocol.

1. E-mail attachments
E-mail attachments are ideal for distributing small files across the Internet.

Advantages:
a) this approach doesn’t require installing any additional servers. You may simply

use your Internet Service Provider;
b) error reports can be transparently delivered through firewalls;
c) product support may handle error reports in standard e-mail clients and provide

customers with feedback via e-mail.

Disadvantages:
a) it’s very difficult or even impossible to handle e-mail messages with attached

error reports automatically. For example, you cannot effectively filter error reports
for multiple products;

b) most SMTP servers reject e-mail messages with large attachments – it may
cause problems with large minidump files stored in the attachment.

2. Low-level TCP-based network protocol
BugTrap may deliver error reports to BugTrap server over light-weight network protocol
optimized for transferring large amounts of data. BugTrap server provides better
opportunity for products with complex support on the local network. Usually this is the
most suitable option for software developers, SQA groups and local testers during
product development and beta-testing.

Advantages:
a) error reports may be automatically stored in the repository, arranged by product

name and filtered according to configuration file;
b) there are no limitations regarding the size of the report, it may include large

minidump file as well as you can attach arbitrary number of custom log files to
the report;

c) BugTrap server is extremely fast and lightweight server. It can be effectively
used on the local network. It can be installed on any computer and it doesn’t
require Web-server.

Disadvantages:
a) native BugTrap protocol may be blocked by firewalls, that’s why this option is

primarily intended for local area network.

3. HTTP protocol
Since most computers are protected by firewalls, BugTrap server may not successfully
receive error reports from the Internet. This can be solved using BugTrap Web server.
BugTrap Web server may handle error reports received over HTTP protocol - a
standard transport protocol transparently passed through firewalls.
HTTP protocol is not as efficient for data transfers as native BugTrap server protocol
and BugTrap Web server requires a computer with Web-server (Microsoft IIS 5 – 6), but

BugTrap Developer’s Guide

Page 36 of 44

BugTrap Web server may handle all reports automatically without any user interaction.
This is the best option for products with complex support on the Internet.

Advantages:
a) error reports may automatically be stored in the repository, arranged by product

name and filtered according to configuration file;
b) there are no limitations for report size, it may include large minidump file as well

as you can attach arbitrary number of custom log files;
c) error reports can be transparently transferred through firewalls.

Disadvantages:
a) you have to maintain a computer with Web-server (Microsoft IIS 5 – 6) on the

network;
b) HTTP protocol is not as efficient as native BugTrap protocol and BugTrap server

is much faster than BugTrap Web server running on Web-server.

The rest of this chapter describes BugTrap server and BugTrap Web server.

5.1 BugTrap server
BugTrap server is a standalone server that handles all requests using lightweight TCP-
based protocol. It doesn’t require Web-server and it can be started on any computer.
The same server may receive reports from multiple products. You may restrict the list of
products and the amount of the received information in one config-file. Win32 and .NET
versions reuse the same network protocol, so the same server may be used for both types
of applications. It’s possible to receive e-mail notifications about incoming reports from
BugTrap server.
There are two versions of BugTrap server available:

a) .NET version of BugTrap server optimized for Windows 2000/XP;

b) platform-independent Java version of BugTrap server.

Both versions reuse the same format of XML configuration file and maintain the same
repository. Both versions use asynchronous network operations and thread pooling for
optimal performance and scalability.
BugTrap server is designed to be stable and to continue normal reports processing even in
case of unexpected internal errors: it just writes error information to system event log (.NET
version) or standard error stream (Java version), closes broken connection and terminates
broken task. At the same time other threads remain stable and unaffected.

5.1.1 Installing .NET version of BugTrap server
.NET version of BugTrap server requires Microsoft .NET Framework 2.0.
BugTrap server can be installed on Windows NT platform as Windows service or it can be
launched as typical Win32 application with /run command line option.
Though BugTrap server may be used as normal Windows application, it’s strongly
recommended to run BugTrap server as Windows service on Windows 2000 or Windows
XP operating systems. You may install and uninstall BugTrap service in the command
prompt:

Installation command line: BugTrapServer.exe /install

BugTrap Developer’s Guide

Page 37 of 44

De-installation command line: BugTrapServer.exe /uninstall

5.1.2 Installing Java version of BugTrap server
Java version of BugTrap server requires the following components:

a) Java 2 Platform, Standard Edition 5.0 (J2SE)
http://java.sun.com/j2se/1.5.0/download.jsp

b) JavaMail 1.4
http://java.sun.com/products/javamail/downloads/index.html

c) JavaBeans Activation Framework 1.1
http://java.sun.com/products/javabeans/jaf/downloads/index.html

Server code is located in BugTrap\Server\JBugTrapServer\JBugTrapServer.jar file.
BugTrap server can be executed using the following batch file (the example assumes
J2SE, JavaMail and JAF are installed on your computer):

@echo off

set JAVAHOME=%ProgramFiles%\Java
set JDK=jdk1.5.0_07
set JMAIL=javamail-1.4
set JAF=jaf-1.1
set JAVABIN=%JAVAHOME%\%JDK%\bin
set
CLSPATH=".;%JAVAHOME%\%JDK%\jre\lib\rt.jar;%JAVAHOME%\%JMAIL%\mail.jar;%JAVAHOME
%\%JAF%\activation.jar"

"%JAVABIN%\java.exe" -classpath JBugTrapServer.jar;%CLSPATH%
BugTrapServer.ServerApp 2>>BugTrapServerError.log

Note: the example above redirects standard error output stream to
BugTrapServerError.log file. This is useful for tracking internal server errors.

5.2 BugTrap Web server
BugTrap Web server is a typical ASP.NET Web-application. It should be registered as
typical Web-application in Internet Information Server 5 or 6.
The same server may receive reports from multiple products. You may restrict the list of
products and the amount of received information in one config-file. Win32 and .NET
versions reuse the same network protocol, so the same server may be used for both types
of applications. It’s possible to receive e-mail notifications about incoming reports from
BugTrap Web server.

5.2.1 Installing BugTrap Web server
BugTrap Web server requires ASP.NET 2.0 and Microsoft .NET Framework 2.0.
BugTrap Web server directory contains several files such as RequestHandler.aspx and
Web.config. RequestHandler.aspx intercepts client requests and redirects them to
corresponding DLL located in bin directory. RequestHandler.aspx should be explicitly
specified in HTTP address passed to BT_SetSupportServer():

http://<domain name>/BugTrapWebServer/RequestHandler.aspx

BugTrap Developer’s Guide

Page 38 of 44

By default BugTrap Web server doesn’t have permission for creating new folders on your
computer. You should create the repository and manually grant Modify privilege for this
folder to ASPNET user.
Let’s suppose you want to store error reports in reports sub-folder of your Web
application. In this case you should complete the following steps:

1. create new reports folder (typically in C:\Inetpub\wwwroot\BugTrapWebServer);
2. open properties window for newly created folder;
3. switch to Security tab in folder properties;
4. click Add button;
5. type ASPNET in object names field and press OK button;
6. select Modify checkbox;
7. press OK button to save changes.

5.2.2 Testing BugTrap Web server
Usually it‘s easier to test BugTrap Web server using “BugTrap Request Simulator” web
page and only then use real BugTrap client.

1. custom errors mode is enabled in Web.config for easier diagnostics. By default
detailed error information will be shown to users locally connected to Web-server.

BugTrap Developer’s Guide

Page 39 of 44

You can make this information available for remote users, just set <customErrors
mode="On"/> in Web.config and save your changes;

2. open your browser and go to
http://<server name>/BugTrapWebServer/RequestSimulator.htm;

3. fill out test form with arbitrary product information:

Note: you should leave notification e-mail empty unless you have properly configured
SMTP-server in Web.config as described below.

4. press “Submit Report” button;
5. you should see the following message if everything is properly configured and the

repository is accessible for ASPNET user:

6. after completing the test you may want to disable custom errors mode in Web.config
and delete RequestSimulator.htm file;

7. now it is good time to update server settings in BugTrapTest and make sure
BugTrap client can establish a connection.

5.3 Configuring BugTrap server
Both BugTrap server and BugTrap Web read configuration from XML files with almost the
same structure.

BugTrap Developer’s Guide

Page 40 of 44

5.3.1 BugTrap server configuration file
BugTrap server configuration is stored in BugTrapServer.exe.config XML file that must be
located in the same folder with BugTrapServer.exe (.NET version) or JBugTrapServer.jar
(Java version) file.

BugTrap server configuration file has the following structure:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <section name="applicationSettings"
type="BugTrapServer.ApplicationSettingsHandler, BugTrapServer"/>
 </configSections>
 <applicationSettings>
 <logEvents>true</logEvents>
 <serverPort>9999</serverPort>
 <reportPath>c:\reports</reportPath>
 <reportsLimit>-1</reportsLimit>
 <maxReportSize>-1</maxReportSize>
 <smtpHost>smtp.server.address</smtpHost>
 <!--<smtpPort>25</smtpPort>-->
 <smtpUser>username</smtpUser>
 <smtpPassword>password</smtpPassword>
 <senderAddress>sender@email.com</senderAddress>
 <reportFileExtensions>log,xml,zip</reportFileExtensions>
 <applicationList>
 <!--
 <application>FirstApp</application>
 <application version="1.2">SecondApp</application>
 -->
 </applicationList>
 </applicationSettings>
</configuration>

These parameters are described below.

5.3.2 BugTrap Web server configuration file
BugTrap Web server may be configured using almost the same XML file but this file should
be located in BugTrap Web server application folder and it should be called Web.config.
Usually this file contains standard information about .NET Web-application, but BugTrap
Web server configuration file has several custom fields:

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="applicationSettings"
type="BugTrapServer.ApplicationSettingsHandler"/>
 </configSections>
 <system.web>
 <compilation debug="false" urlLinePragmas="true"/>
 <authentication mode="None"/>
 <customErrors mode="RemoteOnly"/>
 <sessionState mode="Off" cookieless="true"/>
 <!--<trust level="BugTrapWebTrust"/>-->

BugTrap Developer’s Guide

Page 41 of 44

 </system.web>
 <applicationSettings>
 <logEvents>false</logEvents>
 <serverPort>9999</serverPort>
 <reportPath>reports</reportPath>
 <reportsLimit>-1</reportsLimit>
 <maxReportSize>-1</maxReportSize>
 <smtpHost>smtp.server.address</smtpHost>
 <!--<smtpPort>25</smtpPort>-->
 <smtpUser>username</smtpUser>
 <smtpPassword>password</smtpPassword>
 <senderAddress>sender@email.com</senderAddress>
 <reportFileExtensions>log,xml,zip</reportFileExtensions>
 <applicationList>
 <!--
 <application>FirstApp</application>
 <application version="1.2">SecondApp</application>
 -->
 </applicationList>
 </applicationSettings>
</configuration>

5.3.3 Configuration settings

Both files have the same set of parameters specified in appSettings section:

Parameter Description

logEvents Indicates whether to report Start, Stop commands and error messages in
system event log.

serverPort Port number where server listens incoming error reports. This number must
be the same as a value specified in BT_SetSupportServer().

reportPath Path to the repository where reports are stored.

reportsLimit Maximum number of reports accepted by the server for the same product. -1
means unlimited number of reports.

maxReportSize Maximum accepted size of report file. -1 means unlimited report size.

smtpHost Address of SMTP server used for sending notification e-mails to product
support about incoming reports. E-mail notifications will be disabled if this
field is empty.

smtpPort This field can be used to override default port number of SMPT server.

smtpUser User name to establish a connection to SMTP server.

smtpPassword Password to establish a connection to SMTP server.

senderAddress Sender address (“from” field) of notification e-mails sent about new errors.

reportFileExtensions Colon delimited list of report file extensions accepted by the server. Report
files will not be filtered if this list is empty. You should not change this setting
in most cases.

You can configure the list of accepted products in applicationList section. BugTrap
server rejects reports for products not listed in applicationList section. You may leave
this section empty if you want to accept reports from any application.

BugTrap Developer’s Guide

Page 42 of 44

5.3.4 System event log and BugTrap Web server

By default BugTrap Web server won’t write error information to system event log. If you
want to take advantage of error logging, you may set logEvents=true in Web.config file.
This change requires few additional steps because access to system event log is disabled
for ASP.NET applications. BugTrap installs custom security policy file that overrides default
security settings for BugTrap Web server. This file is called bugtrap_web_trust.config and
it is typically located in C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\CONFIG. This
folder also includes machine-level Web.config file. Go to this folder and open main
Web.config file in any text editor. At the top of this file you will notice the list of available
security policies:

<location allowOverride="true">
 <system.web>
 <securityPolicy>
 <trustLevel name="Full" policyFile="internal" />
 <trustLevel name="High" policyFile="web_hightrust.config" />
 ...
 </securityPolicy>
 <trust level="Full" originUrl="" />
 </system.web>
</location>

Add to this list a new policy as shown below:

<location allowOverride="true">
 <system.web>
 <securityPolicy>
 <trustLevel name="Full" policyFile="internal" />
 <trustLevel name="High" policyFile="web_hightrust.config" />
 <trustLevel name="Medium" policyFile="web_mediumtrust.config" />
 <trustLevel name="Low" policyFile="web_lowtrust.config" />
 <trustLevel name="Minimal" policyFile="web_minimaltrust.config" />
 <trustLevel name="BugTrapWebTrust"
 policyFile="bugtrap_web_trust.config" />
 </securityPolicy>
 <trust level="Full" originUrl="" />
 </system.web>
</location>

Save your changes and open local BugTrap Web.config file (typically stored in
C:\Inetpub\wwwroot\BugTrapWebServer).

Locate the following line: <!-- <trust level="BugTrapWebTrust"/> -->

Remove comments from XML tag and save your changes. Now BugTrap Web server
should be running in custom security policy.

5.3.5 BugTrap server repository
BugTrap server creates folders tree for different projects and arranges reports among
those folders. Every report gets its own unique name to avoid collisions:

BugTrap Developer’s Guide

Page 43 of 44

5.4 A conclusion
BugTrap package provides you with comprehensive set of tools that can track and manage
unexpected errors in most kinds of applications on most environments. It simplifies error
analysis and problem fixing, it makes product more stable and improves the quality of
product support. BugTrap decreases maintenance costs during whole product life cycle.

BugTrap Developer’s Guide

Page 44 of 44

APPENDIX A – Folders list

BugTrap folders tree:
Folder Description

BugTrap for Win32 & .NET\ Root product folder

doc\ Product documentation

Net\ .NET client, supplementary applications and examples

BugTrapNet\ Project folder of BugTrap DLL for .NET

Examples\ Folder with .NET examples

BugTrapConsoleNetTest\ Project folder of sample console .NET application

BugTrapNetTest\ Project folder of sample GUI .NET application

ThreadsNetTest\ Project folder of sample multithreaded .NET application

Win32\ Win32 client, supplementary applications and examples

bin\ Executables of BugTrap for Win32 and sample applications

BugTrap\ Project folder of BugTrap DLL for Win32

Examples\ Folder with Win32 examples

BugTrapConsoleTest\ Project folder of sample console Win32 application

BugTrapTest\ Project folder of sample GUI Win32 application

Server\ Root folder for server applications

BugTrap Server\ .NET service files

JBugTrapServer Java server files

BugTrap Web server folders tree (typically installe d in C:\Inetpub\wwwroot folder):
Folder Description

BugTrapWebServer\ Root folder for Web server files

bin\ BugTrap Web server executable files

